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Good-Turing Frequency Estimation Without Tears*

William A. Gale and Geoffrey Sampson
AT&T Bell Laboratories, USA and University of Sussex, U.K.

ABSTRACT

Linguists and speech researchers who use statistical methods often need to estimate the frequency of some
type of item in a population containing items of various types. A common approach is to divide the number of
cases observed in a sample by the size of the sample; sometimes small positive quantities are added to divisor
and dividend in order to avoid zero estimates for types missing from the sample. These approaches are obvious
and simple, but they lack principled justification, and yield estimates that can be wildly inaccurate. I.J. Good
and Alan Turing developed a family of theoretically well-founded techniques appropriate to this domain.
Some versions of the Good-Turing approach are very demanding computationally, but we define a version, the
Simple Good-Turing estimator, which is straightforward to use. Tested on a variety of natural-language-
related data sets, the Simple Good-Turing estimator performs well, absolutely and relative both to the ap-
proaches just discussed and to other, more sophisticated techniques.

1. THE USE OF GOOD-TURING
TECHNIQUES

Consider a population made up of individuals
drawn from a large number of distinct species
having diverse frequencies, including a few very
common species, many rare species, and inter-
mediate numbers of species of intermediate fre-
quencies. We want to estimate the frequencies
of the species in the population by counting their
incidence in a finite sample. The "species" might
be fauna or flora; but, in a linguistic context,
they could be words (that is, word-types, repre-
sented in a sample of language by different num-
bers of word-tokens), word classes, bigrams
(pairs of adjacent words), syllables, grammati-
cal constructions, or the like. (In a linguistic
context the terms "type" and "token" might seem
more appropriate than "species" and "individu-
al", but "type" is a relatively ambiguous word
and we shall use "species" for the sake of ex-
plicitness.)

Say that the sample contains N individuals,
and that for each species i it includes ri exam-
ples of that species. (The number s of distinct
species in the population may be finite or infi-
nite, though N - and consequently the number
of distinct species represented in the sample -
must be finite.) We call r. the sample frequency
of i, and we want to use it in order to estimate
the population frequency pt of i, that is the prob-
ability that an individual drawn at random from
the population will be a case of species i. Note
that sample frequencies are integers from the
range 0 to N, whereas population frequencies
are probabilities, i.e. real numbers from the range
Otol . 1

A very obvious method of estimating the pop-
ulation frequency is to divide sample frequency
by size of sample, that is to estimate p. as r/N.
This is known as the maximum likelihood esti-
mator for population frequency.2 The maximum
likelihood estimator has a large drawback: it
estimates the population frequency of any spe-
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cies that happens to be missing from the sample
- any unseen species - as zero. If the popula-
tion contains many rare species, it is likely that
quite a number of them will be absent from a
particular sample; since even a rare species has
some positive population frequency, the maxi-
mum likelihood estimator clearly underestimates
the frequencies of unseen species, and corre-
spondingly it tends to overestimate the frequen-
cies of species which are represented in the sam-
ple. Thus the maximum likelihood estimator is
quantitatively inaccurate. More importantly, any
estimator which gives zero estimates for some
positive probabilities has specially unfortunate
consequences for statistical calculations. These
often involve multiplying estimated probabili-
ties for many simple phenomena to reach over-
all figures for the probability of interesting com-
plex phenomena; zeros propagate through such
calculations, so that phenomena of interest are
often assigned zero probability even when most
of their elementary components are very com-
mon and the true probability of the complex
phenomenon is reasonably high.

The second problem is often addressed by
adding some small figure k to the sample fre-
quencies for each species before calculating
population frequencies: thus the estimated pop-
ulation frequency of species i would be
(r(. + k)/(N+sk). This eliminates zero estimates:
an unseen species is assigned the estimated fre-
quency k/(N+sk). We shall call this the additive
method. The additive method was advocated as
an appropriate technique by Lidstone (1920:185),
Johnson (1932: 418-419), and Jeffreys (1948:
§3.23), the first and third of these using the val-
ue k = 1. When the additive method is applied
with the value k = 1, as is common, we shall call
it the Add-One estimator. In language research
Add-One was used for instance by the Lancas-
ter corpus linguistics group (Marshall, 1987:54),
and by Church (1989).

But, although the additive approach solves
the special problem about zeros, it is neverthe-
less very unsatisfactory. Gale & Church (1994)
examine the Add-One case in detail and show
that it can give approximately accurate estimates
only for data-sets which obey certain quite im-
plausible numerical constraints. Tested on a body

of real linguistic data, Add-One gives estimated
frequencies which for seen species are always
much less accurate even than the maximum like-
lihood estimator, and are sometimes wrong by a
factor of several thousand.

The sole virtue of these techniques is their
arithmetical simplicity. But, with a modest in-
crease in complexity of calculation, one can
achieve estimators whose performance is far
superior. The purpose of this paper is to de-
scribe a family of population frequency estima-
tors, the Good-Turing estimators, which deserve
to be better known to computational linguists
than they currently are; and to define a member
of this family, the Simple Good-Turing estima-
tor, which is easier to understand and to use
than the various Good-Turing estimators previ-
ously described in the literature, and which is
shown to give very satisfactory performance.

2. THE BACKGROUND AND AN
EXAMPLE

Good-Turing frequency estimation techniques,
the classic exposition of which is Good (1953),
emerged from the intellectual partnership be-
tween Alan Turing and I.J. Good within the
mechanized codebreaking effort at Bletchley
Park, Buckinghamshire, during the Second World
War; this work depended heavily on inferences
about probabilities. (Good-Turing techniques
may thus be reckoned as one of the minor fruits
of the Bletchley Park enterprise, whose more
significant consequences included large shares
of responsibility for Allied victory in the war,
and for the development of the digital compu-
ter. On the general background, see Hodges,
1983; Hinsley & Stripp, 1993.) Good-Turing
techniques yield estimates for the population
frequencies corresponding to the various ob-
served sample frequencies for seen species, and
an estimate for the total population frequency
of all unseen species taken together (we shall
call this quantity Po — note that capital P is used
for the sum of the separate probabilities of a
number of species, whereas pi is used for the
individual probability of a species i). The tech-
niques do not in themselves tell one how to share
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Po between the separate unseen species, but this
is an important consideration in applying the
techniques and we discuss it in §9 below. Also,
Good-Turing techniques do not yield estimates
for the number of unseen species, where this is
not known independently. (Some references on
this last issue are Fisher et al., 1943; Goodman,
1949; Good & Toulmin, 1956; McNeil, 1973;
Efron & Thisted, 1976.)

In order to introduce Good-Turing concepts,
let us take a concrete example, which is drawn
from research on speech timing reported in
Bachenko & Gale (1993); we shall refer to this
as the "prosody example". Assuming a classifi-
cation of speech segments into consonants, full
vowels, and reduced vowels, we wish (for rea-
sons that are not relevant here) to estimate the
frequencies in English speech of the various
possible sequences containing only the classes
"consonant" and "reduced vowel" occurring
between two full vowels. That is, the "species"
in the population are strings such as VCV,
VCRCV, VCCRCRCV, and so on, using C, V,
and R to represent the three classes of speech-
segment.

Using the TIMIT database as a sample, ob-
served frequencies were extracted for various
species; a few examples of the resulting figures
are shown in Table 1.

The Appendix shows the complete range of
sample frequencies represented in these data,
together with the frequencies of the respective
sample frequencies; if r is a sample frequency,
we write nr for the number of different species
each having that frequency, thus nr is a "fre-

Table 1. Observed Frequencies of Some Phone-type
Strings.

VCV
vccv
VCCRCRCV
VCCRRCCCV
VCCRCRV
VRCCRCRCV
VRCCCRCV
VRRCCV
VRRCCCV
VCCRCRV
VRCRCRV

7846
6925
224
23
7
6
5
4
3
2
1

quency of a frequency". For instance, the third
row of the Appendix (r = 3, nr = 24) means that
there are 24 distinct strings which each occur
three times in the data. The sample comprises a
total of 30 902 individual strings (this is the
sum of the products of the two numbers in each
row of the Appendix); that is, N = 30 902. The
string VCV, with frequency 7846, is the single
commonest species in the data. The commonest
frequency is 1, which is shared by 120 species.
As one moves to frequencies greater than 1, the
frequencies of the frequencies decline, at first
steadily but later more irregularly. These are
typical patterns for many kinds of language and
speech data.

3. THE THEORETICAL RATIONALE

We now outline the reasoning underlying the
Good-Turing approach to estimating population
frequencies from data-sets such as that of the
Appendix. The theorems on which the techniques
depend are stated without proof; readers wish-
ing to pursue the subject may like to consult
Church, Gale, & Kruskal (1991).3 Some read-
ers may prefer to bypass the present section al-
together, in favour of consulting only §6, which
presents mechanical "recipe book" instructions
for applying the Simple Good-Turing technique
without explaining why it works. However, ap-
plications of the technique are likely to be
more judicious when based on an awareness of
its rationale.

We first introduce an additional notation, r*.
Given a particular sample, we write r* for the
estimated number of cases of a species actually
observed r times in that sample which would
have been observed, if the sample were perfect-
ly representative of the population. (This con-
dition would require the possibility of fraction-
al observations.) The quantity r* will normally
be less than r, since if the sample were perfectly
representative part of it would be taken up by
unseen species, leaving fewer elements of the
sample to accommodate the species that actual-
ly were observed. Good-Turing techniques con-
sist mainly of a family of methods for estimat-
ing r* (for frequencies r > 1); given r*, we es-
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timate pr (which is what we are trying to find)
as r*/N.

Suppose we knew the true population fre-
quencies /?,, p2,...ps of the various species.
Then we could calculate the expected frequency
E(nr) of any sample frequency r; E(nr) would

b e ~r. w h e r e

resents the number of distinct ways one can draw
r objects from a set of N objects. (That is, the
expected frequency of frequency r would be the
sum of the probabilities, for each r-sized subset
of the sample and each species, that all mem-
bers of the subset belong to that species and no
other sample element belongs to it.) This ex-
pectation depends on an idealized assumption
that there are no interactions between occur-
rences of particular species, so that each occur-
rence of species i is the outcome of something
akin to an independent dice-throwing experi-
ment in which one face of the dice represents i
and the other faces represent not-/ and the prob-
ability Pi of getting i rather than not-i is fixed
and unchanging: statisticians call this a binomi-
al assumption. In reality the assumption is usu-
ally false, but often it is false only in ways that
have minor, negligible consequences for the
overall pattern of occurrences in a sample; in
applying statistical methods that incorporate the
binomial assumption (including Good-Turing
methods) to a particular domain, one must be
alive to the issue of whether the binomial as-
sumption is likely to be seriously misleading in
that domain. For our example, occurrences of
particular strings of consonants and reduced
vowels are not truly independent of one anoth-
er: for some pairs of strings there are several
English words which contain both strings at suc-
cessive points, for other pairs there are no such
words. But, within a sizeable database contain-
ing many words, these interrelationships are like-
ly to affect the overall pattern of string frequen-
cies sufficiently little to make the binomial as-
sumption harmless.4

If we knew the expected frequencies of fre-
quencies, it would be possible to calculate r*.
The central theorem underlying Good-Turing
methods states that, for any frequency r > 1 :

(1) r ( r + 1)

E(nr)
A corollary states that:

(2)

In reality we cannot calculate exact figures for
expected frequencies of frequencies, because they
depend on the probabilities of the various spe-
cies, which is what we are trying to find out.
However, we have figures for the observed fre-
quencies of frequencies, and from these we can
infer approximations to the expected frequen-
cies.

Take first equation (2). This involves only
the expected frequency of sample frequency 1.
In the sort of data we are considering, where
there are few common species but many rare
species, frequency 1 will always be the com-
monest sample frequency, and the actual figure
for n, is likely to be a close approximation to
£(«[) - compare the fact that the oftener one
tosses a coin, the surer one can be that the cu-
mulative proportion of heads will be close to
one half. Thus it is reasonable to estimate Po

as equal to n{/N. In the example, n, is 120,
hence our estimate of the total probability of all
unseen species of strings is 120/30902, or 0.0039.
If another ten thousand strings were sampled
from speech comparable to that sampled in the
TIMIT database, we estimate that 39 of them
would represent some string or strings not found
in TIMIT.

As we move to higher sample frequencies,
the data become increasingly "noisy": already
at r = 5 and r = 7 in the Appendix we see cases
where nr is greater than n M , although the over-
all trend is for nr to decrease as r increases.
Furthermore there are many gaps in the list of
observed sample frequencies; thus for our ex-
ample one could not get a sensible r* figure in
the case of r = 10 by substituting actual for
expected frequencies of frequencies in equation
(1), because the frequency r + 1, i.e. 11, does
not occur at all (n n is zero, so 10* calculated in
this way would also be zero, which is absurd).
As one moves towards higher values of r, the
gaps where nr = 0 become larger. What we need
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is a technique for smoothing the irregular and
"gappy" series of nr figures into a regular and
continuous series, which can be used as good
proxies for the unknowable E(nr) figures in equa-
tion (1).

Much of Good's 1953 paper concerned alter-
native techniques for smoothing observed se-
ries of frequencies of frequencies. The reason
for speaking of Good-Turing techniques, in the
plural, is that any concrete application of the
above concepts requires a choice of some par-
ticular method of smoothing the nr figures; not
all methods will give equally accurate popula-
tion-frequency estimates in a given domain.
Some techniques (including the smoothing tech-
nique of Church & Gale, 1991) are mathemati-
cally quite elaborate. The Simple Good-Turing
method is relatively easy to use, yet we shall
show that it gives good results in a variety of
tests.

4. LINEAR SMOOTHING

To gain an intuitive grasp of SGT smoothing, it
is helpful to visualize the data graphically. Fig.
1 plots nr against r for our example. Because
the ranges of values for both r and nr include
values clustered close together in the lower reach-
es of the respective ranges and values separated
widely in the upper reaches (as is typical of
linguistic data), the plot uses a logarithmic scale
for both axes.

For lower sample frequencies the data points
group round a northwest-to-southeast trend, but
at higher sample frequencies the trend becomes
horizontal along the line nr= 1. This angular
discontinuity in Fig. 1 does not correspond to
any inherent property of the population. It is
merely a consequence of the finite size of the
sample: a sample frequency may occur once or
not at all but cannot occur a fractional number
of times. When using observed frequencies of
frequencies to estimate expected frequencies of
frequencies for high sample frequencies, we
ought to take account not only of the fact that
certain high r values correspond to positive nr

values but also of the fact that neighbouring r
values correspond to zero nr values. Following

(M -
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3w
CD

O o -

Ü
c
CD
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++H- -H-

~ w i" Trnr
[• i if it

111 TT TT
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Fig. 1.

Church & Gale (1991), we do this by averaging
positive nr values with the surrounding zero val-
ues. That is, we define a new variable Zr as
follows: for any sample frequency r, let r' be
the nearest lower sample frequency and r" the
nearest higher sample frequency such that nr,
and nr,, are both positive -ather than zero. Then
Zr = 2nJ(r" - r'). For low r, r and r" will be
immediately adjacent to r, so that r" - / will be
2 and Zr will be the same as nr; for high r, Zr

will be a fraction, sometimes a small fraction,
of nr.

5 Most of our estimates of expected fre-
quencies will be based on Zr rather than directly
on nr.

Fig. 2a plots Zr against r for our sample on
the same log-log scales as in Fig. 1. The discon-
tinuity of Fig. 1 has disappeared in Fig. 2a: the
data points all group fairly well along a single
common trend. Furthermore, not only does Fig.
2a display a homogeneous trend, but this trend
is a straight line. That is not surprising: G.K.
Zipf argued that distribution patterns for many
linguistic and other behavioural elements are
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approximately log-linear.6 We have examined
perhaps a dozen radically different language and
speech data-sets, and in each case on a log-log
plot the points group round a straight line (with
a slope between —1 and —2). The Simple Good-
Turing technique exploits the fact that such plots
typically show linear trends.

Any method of smoothing data must, if it is
to be usable for our present purpose, satisfy cer-
tain prior expectations about r*. First, we ex-
pect r* to be less than r, for all nonzero values
of r; secondly, we expect r */r to approach unity
as r increases. The first expectation follows from
the fact that observed sample frequencies must
be reduced in order to release a proportion of
sample elements to accommodate unseen spe-
cies. The second expectation reflects the fact
that the larger r is, the better it is measured, so
we want to take away less and less probability
as r increases.

It is not at all easy to find a method for smooth-
ing Zr figures that will ensure the satisfaction of

these prior expectations about r*. However, a
downward-sloping log-log line is guaranteed to
satisfy them. Since a straight line is also the
simplest possible smooth, part of the SGT tech-
nique consists of using the line of best fit to the
(log r, log Zr) points to give our proxy for E(nr)
values when using equation (1) to calculate r*.
We shall write S(r) ("smoothed Z") for the val-
ue into which this line takes a sample frequency
r? Fig. 2b shows the line of best fit superim-
posed on the data points of Fig. 2a.

But, for the lowest few values of r, observed
nr values may well be more accurate than any
smoothed values as estimates of E(nr). There-
fore the other aspect of the SGT technique con-
sists of a rule for switching between nr and S(r)
as proxies for E(nr) when calculating r* - for
switching between raw and smoothed proxies,
we shall say. The rule is that r* is calculated
using nr rather than S(r) as proxy for E(nr) for r
from 1 upwards so long as these alternative
methods of calculating r* give significantly dif-
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ferent results. (The general pattern is that, as r
increases from 1, there will be a short stretch of
values for which the alternative r* estimates
are significantly different, then a short stretch
of values where the pairs of r* estimates oscil-
late between being and not being significantly
different, and then above a certain value of r the
pairs of estimates will never be significantly
different.) Once the lowest value of r is reached
for which nr and S(r) give estimates of r* which
are not significantly different, S(r) is used to
calculate r* for that value and for all higher
values of r.

Pairs of r* estimates may be considered sig-
nificantly different if their difference exceeds
1.96 times the standard deviation (square root
of variance) of the estimate based on nr (since,
assuming a Gaussian distribution of that esti-
mate, the probability of such a difference oc-
curring by chance is less than the accepted .05
significance criterion).8 The variance in ques-
tion is approximately equal to

)2Ür±L,
„2

Table 2. Estimated Population Frequencies of Some
Phone-type Strings.

It is the adoption of a rule for switching be-
tween smoothed and raw frequencies of frequen-
cies as proxies for expected frequencies of fre-
quencies which allows the SGT method to use
such a simple smoothing technique. Good-Tur-
ing methods described previously have relied
on smoothed proxies for all values of r, and this
has forced them to use smoothing calculations
which are far more daunting than that of SGT.10

One further step is needed before the SGT
estimator is completely defined. Because it uses
proxies for the true expected frequencies of fre-
quencies E(nr), we cannot expect the estimated
probabilities yielded by the SGT technique to
sum to one, as they should. Therefore each esti-
mated probability generated as discussed above
has to be renormalized by dividing it by the
total of the unnormalized estimates and multi-
plying by the estimated total probability of seen
species, 1 - PQ.

Applying the technique defined above to the
prosody data in the Appendix gives a line of
best fit log S(r) = -1.389 log r + 1.941 (with
S(r) interpreted as discussed above). For com-

vcv
vccv
VCCRCRCV
VCCRRCCCV
VCCRCRV
VRCCRCRCV
VRCCCRCV
VRRCCV
VRRCCCV
VCCRCRV
VRCRCRV

r

7846
6925
224
23

7
6
5
4
3
2
1

r*

7S39.
6919.
223.4
22.60
6.640
5.646
4.653
3.664
2.680
1.706

0.7628

Pr

0.2537
0.2239

0.007230
0.0007314
0.0002149
0.0001827
0.0001506
0.0001186
8.672e-05
5.522e-05
2.468e-05

parison with Table 1, we show in Table 2 the r*
and pr figures estimated by SGT for the same
selection of species. In this particular example,
as it happens, even for r = 1 the alternative cal-
culations of r* give figures that are not signifi-
cantly different, so values based on smoothed
proxies are used throughout; but that is a chance
feature of this particular data-set, and in other
cases the switching rule calculates r* from raw
proxies for several values of r - for instance, in
the "Chinese plurals" example of the following
section, raw proxies are used for r = 1 and
r = 2 .

5. OPEN V. CLOSED CLASSES: CHINESE
PLURALS

A second example, illustrating an additional use
of the concepts under discussion, is taken from
the field of Chinese morphology. Chinese has
various devices to mark the logical category of
plurality, but (unlike in European languages)
this category is by no means always marked in
Chinese. For instance, there is a plural suffix
men which can be added to personal pronouns
and to some nouns; but many nouns never take
men irrespective of whether they are used with
plural reference in a particular context, and nouns
which can take men will not always do so even
when used with plural reference.

In connexion with work reported in Sproat et
al. (1994) on the problem of automatically seg-
menting written Chinese into words, it was de-
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sirable to establish whether the class of Chinese
nouns capable of taking men is open or closed. ' '
Dictionaries are silent on this point and gram-
matical descriptions of the language tend to be
less than wholly explicit; but it is important for
word segmentation - if the class of nouns that
can take men is closed, an efficient algorithm
could list them, but if the class is open some
other technique must be deployed.

The frequencies of various nouns in men found
in a (manually segmented) corpus of Chinese
were tabulated, the commonest case being rén-
men "people" which occurred 1918 times. Al-
together there were 6551 tokens exemplifying
683 types of men plural. Some sample r, nr fig-
ures are shown in Table 3.

The question whether a linguistic class is open
or closed is not the same as the question wheth-
er the number s of species in a population is
finite or infinite. Asking whether a large class
of linguistic items should be regarded as mathe-
matically infinite tends to be a sterile, philo-
sophical question. The number of words in the
English vocabulary, for instance, must argua-
bly be finite: for one thing because only a finite
number of users of the language have lived, each
producing a finite number of word-tokens in his
lifetime, and word-types must be fewer than
word-tokens; for another thing, because any Eng-
lish word is a string of tokens of a few dozen
character-types, and it is probably safe to say
that a word more than twice as long as the long-
est that has occurred would be unusable. But if
the English vocabulary is finite, it is certainly
an open class: for practical purposes it "might

Table 3. Some Frequencies of Frequencies for Chinese-
plural Data.

1
2
3
4
5
6
7

400
1918

268
112
70
41
24
14
15

1
1

as well" be infinitely large. The question whether
a class is closed or open in this sense might be
glossed as whether a sample of a size that is
practical to assemble will contain examples of a
large fraction, or only a small fraction, of all
the species constituting the class. A corpus of
tens of millions of English word-tokens will
exemplify only a tiny fraction of all the word-
types used in the English language.

In terms of the statistical concepts under dis-
cussion, if a class is closed we expect to find
1* > 1. With a closed class one will soon see
most of the species, so the number of species
seen just once will tend to become small. For
the Chinese plurals data, 1* = 2«2/n, = 2 x
112/268 = 0.84, which is convincingly less than
unity;12 so we conclude that the class of Chi-
nese nouns forming a plural in men is open, at
least in the sense that it must be very much
larger than the 683 observed cases. This harmo-
nizes with the statement in Y.R. Chao's author-
itative grammar of Chinese (Chao, 1968: 244-
245) according to which men can be suffixed to
"words for persons" (and, in certain regional
dialects, to some other nouns), which suggests
that men plurals form an open class.

Rather than giving a series of figures analo-
gous to Table 2 for the Chinese plurals exam-
ple, a clearer way of showing the reader the
nature of a set of SGT estimates is via a plot of
r*/r against r- such a plot is enlightening when-
ever Good-Turing techniques are applied. Fig.
3 plots r*/r against r for both the prosody and
the Chinese-plural examples, representing the
two sets of data points by 'p ' and 'c ' respec-
tively.

The Chinese plurals example needs more prob-
ability set aside for unseen types than does the
prosody example (.04 versus .004); but it has
twice as many types and five times as many
tokens to take this probability from, so the ra-
tios of r* to r are not so very different between
the two cases. The fact that 1* and 2* in the
Chinese plurals case are based on raw proxies
which yield estimates that are significantly larger
than the alternative estimates based on smoothed
proxies - as is apparent from the distribution of
'c' symbols in Fig. 3 - hints that the class may
not be entirely open-ended, but if required to
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categorize it on one or the other side of what is
in reality a continuum between open and closed
classes, on the basis of the data used here we
would probably do well to treat it as open.

6. THE PROCEDURE STEP BY STEP

This section presents a complete but totally
mechanical statement of the SGT algorithm. No
rationale is offered in this section. §3 covered
the reasons for the steps in the algorithm which
we now present.13

Our data are a sample of individuals belong-
ing to various species. On the basis of the nu-
merical properties of the sample we shall assign
values to an integer variable N and real varia-
bles Fo, If, a, b, and to the cells of a table. The
table is to have as many rows as there are dis-
tinct species frequencies in the data, and seven
columns labelled r, «, Z, log r, log Z, r*, p. The

values in the r and n columns will be integers,
those in the other columns will be reals (in a
concrete computer realization of the algorithm
it may be convenient to use separate arrays).

First, tabulate the various species frequen-
cies found in the sample, and the numbers of
distinct species occurring with each species fre-
quency, in the r and n columns respectively.
For instance, a row with r = 3 and n = 24 will
mean that there are 24 different species each
represented in the sample by three individuals.
Enter these pairs of numbers in the appropriate
columns in such a way that r values always in-
crease between successive rows: the first row
will have r = 1, and the last row will have the
frequency of the commonest species in the r
column. It is convenient not to include rows in
the table for frequencies that are not represent-
ed in the sample: thus the n column will contain
no zeros, and many integers between 1 and the
highest species frequency will appear nowhere
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in the r column. Thus, for the prosody example
of §2 these first two columns will look like the
Appendix.

We shall use the values in the r column to
identify the rows, and they will appear as sub-
scripts to the labels of the other columns to iden-
tify cell values. For instance Z(. will mean the
contents of the cell in the Z column and the row
which has / in the r column (not the Fth row).

Assign to N the sum of the products of the
pairs of integers in the r and n columns. This
will be the number of individuals in the sample.
(In practice the value of N will often have been
ascertained at an earlier stage, but if not it can
be done in this way.)

Assign to Po the value nxIN (where n, repre-
sents the value in the n column and the row for
which r = 1). Po is our estimate of the total
probability of all unseen species. If the identity
of the various unseen species is known, Po should
be divided between them by reference to what-
ever features of the species may suggest prior
probabilities for them (cf. §9).

Enter values in the Z column as follows. For
each row j , let i and k be the values in the r
column for the immediately previous and im-
mediately following rows respectively (so that
k > i). If/ is the first row, let i be 0; if j is the last
row, let k be 2/ - i. Set Z. to the value
2nj/(k-i).

Enter the logarithms of the r and Z values in
the corresponding rows of the log r and log Z
columns. Use regression analysis to find the line
of best fit a + b log r to the pairs of values in the
log r and log Z columns. (Regression analysis
to find the "line of best fit" or "line of least
squares" for a set of data points is a simple and
standard manipulation described in most ele-
mentary statistics textbooks; see e.g. Press et
al., 1988: 523-526, which includes computer
coding.14)

We shall use "S(r)" as an abbreviation for
the function antilog (a = b log r). (If base-10
logarithms are used, antilog(x) means 10*.)
Working through the rows of the array in order
beginning with the row r = 1, begin by calcu-
lating for each value of r the two values x and y
defined by equations (3) and (4) below. If ine-
quality (5) holds, then insert x in the r* column.

( |a; - y\ means the absolute difference between
x and y .) If (5) does not hold, insert y in the r*
column, and cease to calculate x values: for all
subsequent rows insert the respective y value in
the r* column.

(3)

(4)
Sir)

(5) \x -y\> 1.96 x

(Since the values in the r column are not
continuous, in theory the instruction of the pre-
ceding paragraph might be impossible to exe-
cute because the calculation of x could call for
an nr+1 value when the table contained no row
with the corresponding value in the r column.
In practice this is likely never to happen, be-
cause the switch to using y values will occur
before gaps appear in the series of r values. If it
did ever happen, the switch to using y values
would have to occur at that point.)

Let N' be the total of the products nrr * for
the various rows of the table. For each row

r*
calculate the value (1-PO)—; and insert it in
the p column.

Each value pr in this column is now the SGT
estimate for the population frequency of a spe-
cies whose frequency in the sample is r.

7. TESTS OF ACCURACY:
A MONTE CARLO STUDY

SGT gives us estimates for species probabili-
ties in the prosody example, but although we
have theoretical reasons for believing the esti-
mates to be good we have no way of determin-
ing the true probabilities for this example, and
hence no objective way of assessing the accura-
cy of the method. We now present two cases
where we do know the answers.

The first is a Monte Carlo study, meaning
that data-sets are created artificially, using a
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(pseudo-)random number generator, in order to
constitute samples from populations with known
statistical properties: statistical inference tech-
niques can be applied to such samples and their
findings compared with the properties which the
population is known to possess. Such techniques
are well established in statistical research.

For this study, we constructed a set of sam-
ple texts each containing 100 000 word-tokens.
Each text was constructed by drawing tokens
randomly from an ordered list wltw2 ws of
word-types, with the probability of drawing a
token of the fth type being made proportional
to iz for some z less than - 1 . Specifically, for a
text with given s and z the probability of wt

(1

<i<s)was -. Such a distribution is called

If
a Zipfian distribution with exponent z (the ref-
erence here being to "Zipf's Law" - cf. note 6
above).

The study used five values of s (vocabulary
size), namely 5000,10 000,25 000,50 000, and
100 000, and four values of z, namely -1 .1 ,
-1.2, -1 .3, -1.4. One text was constructed for
each combination of vocabulary size and expo-
nent, giving twenty texts in all. At most 15 000
word-types were represented in any one text,
thus the spectrum of vocabulary sizes extended
from cases where the finite nature of the vocab-
ulary was significant to cases where it is impos-
sible to tell from a 100 000-token text whether
the vocabulary is finite or infinite. The range of
exponents are representative of values seen in
real linguistic data.

The question to which Good-Turing meth-
ods estimate the answer, for any one of these
texts, is what the average probability is of those
types which are represented exactly r times in
the text (for any integer r). Each individual type
is assigned a specific probability by the model
used to construct the text, therefore the true av-
erage probability of types which are represent-
ed by r tokens can easily be calculated. Since
the most difficult cases are those where r is
small, we assessed accuracy over the range
1 < r < 10. Average probabilities for r in this

range have two to three significant figures.
We compared the performance of the Simple

Good-Turing method on these data with the per-
formance of three other frequency-estimation
techniques which a researcher might be inclined
to use: two variants of the additive method of
§ 1, and the Deleted Estimate of Jelinek & Mer-
cer (1985).15

Fienberg & Holland (1972) survey six vari-
ants of the additive method, which all share the
advantage of giving nonzero estimates for un-
seen species frequencies but differ with respect
to choice of the figure k which is added to ob-
served sample frequencies. They discuss three
"a priori values": 1 (as in our §1), \, and j
(where s is the number of species, so that one
observation is added to the total number of ob-
servations to renormalize - this choice of k was
advocated by Perks, 1947: 308); and three "em-
pirical values", meaning that k is determined in
different ways by the properties of the particu-
lar set of observations under analysis. For the
kind of data Fienberg & Holland discuss, they
suggest that 1 is too large a value for k and j
too small, but that all four other choices are
reasonable. We have chosen to assess the addi-
tive method here using k = •£ and k = -1 as two
representative choices (we refer to the additive
estimator using these values for k as Add-Half
and Add-Tiny respectively): Add-Half is very
similar to Add-One but has somewhat greater
theoretical justification,16 and Add-Tiny has the
superficial attraction of minimally distorting the
true observations. We do not separately assess
Add-One, because it is so similar to Add-Half,
and we do not assess Fienberg & Holland's "em-
pirical" estimators because language and speech
researchers attracted to the simplicity of the ad-
ditive method would scarcely be tempted to
choose these variants.

Add-Half and Add-Tiny are extremely sim-
ple to apply, and they may be useful for "quick
and dirty" preliminary studies. But we shall see
that they both perform too poorly on the Monte
Carlo data-sets to seem worth considering for
serious investigations.17

A theoretically respectable alternative to
Good-Turing methods is the well established
statistical technique of cross validation. It has
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been applied to linguistic data under the name
"Deleted Estimate" by Jelinek & Mercer (1985),
and see also Nâdas (1985). Cross validation re-
quires calculations which are more demanding
than those of SGT, but they are by no means
beyond the resources of modern computing fa-
cilities. For present purposes we examine the
simplest case, two-way cross validation ("2CV").

The Good-Turing estimator is based on a the-
orem about the frequency one would expect in a
hypothetical additional sample for species oc-
curring with a given frequency r in an observed
sample. Jelinek & Mercer begin by defining a
held-out estimator which turns this concept from
hypothesis to reality, creating an actual addi-
tional sample by dividing an available text sam-
ple into two halves, called retained and held-
out, corresponding respectively to the actual
sample and the hypothetical additional sample
of the Good-Turing approach. Let nr be the
number of species which are each represented r
times in the retained subsample, and let Cr be
the total number of occurrences of those partic-
ular species in the held-out subsample. Then
Cr/nr is used as the adjusted frequency r* from
which the estimated population frequency is
derived.

As it stands this technique is inefficient in
the way it extracts information from available
data. Two-way cross validation (such as Jelinek
& Mercer's Deleted Estimate) uses the data less
wastefully; it combines two held-out estimates
made by swapping the roles of held-out and re-
tained subsamples. If we denote the two halves
of the data by 0 and 1, we write n° for the
number of species each occurring r times in sub-
sample 0, and C"1 for the total number of oc-
currences in subsample 1 of those particular spe-
cies; n) and Cr

10 are defined correspondingly.
The two held-out estimators would be Cr

01/«r°
and Cl" /n) ; the Deleted Estimate combines the
underlying measurements by using equation (6)
to estimate r*:

-i 10

(6)
n°r+n}

assumption made by Good-Turing methods; it
makes only the much weaker assumptions that
the two subsamples are generated by statistical-
ly identical processes, and that the probability
of a species seen r times in a sample of size N is
half that of a sample seen r times in a sample of
size N/2. Cross validation need not be "two-
way"; available data may be divided into three
or more subsamples. However, even two-way
cross validation is a computationally intensive
procedure, and the computational demands grow
as the number of subsamples is increased.

One consideration distinguishing the addi-
tive techniques from both the Good-Turing and
cross validation approaches is that the former,
but not the latter, require knowledge of the
number of unseen species. In a real-life appli-
cation where the "species" are vocabulary items
this knowledge would not ordinarily be availa-
ble. Nevertheless, we have allowed ourselves
to use it, in order to produce results from the
additive techniques for comparison with the SGT
and 2CV results. Since both the additive tech-
niques used prove inferior to both SGT and 2CV,
allowing the former to use the extra informa-
tion has not distorted the validity of our overall
conclusions.

Because true and estimated probabilities can
vary by several orders of magnitude, it is con-
venient to express the error in an estimated prob-
ability as the logarithm of its ratio to the true
probability. For each of the four estimation meth-
ods, Table 4 gives the root mean square of the
base-10 logarithms of these ratios for 11 values
of r from 0 to 10 for each of the twenty data-
sets (five values of s times four values of z).
We shall refer to the root mean square of the
logarithms of a set of estimated-probability/true-
probability ratios as the average error of the
set.

Table 4. Overall Average Error for Four Estimators.

Method RMS error

Cross validation does not make the binomial

Add-Half
Add-Tiny
SGT
2CV

0.47
2.62
0.062
0.18
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Add-Half gets the order of magnitude cor-
rect on average, but Add-Tiny fails even to
achieve that on the Monte Carlo data. Of the
four methods, SGT gives the best overall re-
sults.

Breaking down the overall error rates by dif-
ferent values of r shows where the different tech-
niques fail. In Fig. 4, different plotting symbols
represent the different methods as follows:

H Add-Half
T Add-Tiny
G Simple Good-Turing
C Two-Way Cross Validation

In order to accommodate the full frequency range
in a single Figure, Fig. 4 uses two scales for
average error: the scale on the left applies for
r < 2, the scale on the right applies for r > 2.
Each point represents the average error for the
twenty combinations of vocabulary size and ex-
ponent. We see that the additive methods are

grossly wrong for unseen species, and remain
less accurate than SGT and 2CV over the range
of positive frequencies shown.

By eliminating the data points for the addi-
tive methods, Fig. 5 is able to use a less com-
pressed vertical scale to display the error fig-
ures for the SGT and 2CV methods. We see that
for r greater than about two, the performance of
SGT is comparable to that of 2CV, but that the
latter is poor for r < 2. (It is of course possible
that multi-way cross validation would give bet-
ter performance for small r, we do not know
whether that is so or not, but we have seen that
multi-way cross validation is far more demand-
ing computationally than SGT.)

The performance of SGT in particular is dis-
played in more detail in Fig. 6, which further
expands the vertical scale. We see that SGT
does best for small r and settles down to an
error of about 5% for large r. There is an inter-
mediate zone of a few frequencies where SGT
does less well. This is because the SGT method
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switches between estimates based on raw prox-
ies for small r, and estimates based on smoothed
proxies for higher r. in the switching region
both of these estimation methods have prob-
lems.

Figs. 7 and 8 show how average error in the
SGT estimates varies with vocabulary size and
with Zipfian exponent respectively. We see that
there is no correlation between error level and
vocabulary size, and little evidence for a sys-
tematic correlation between error level and ex-
ponent (though the average error for the largest
exponent is notably greater than for the other
three values). Furthermore the range over which
average error varies is much smaller for vary-
ing exponent or (especially) varying vocabu-
lary size than for varying r.

Error figures obtained using real linguistic
data would probably be larger than the figures
obtained in this Monte Carlo study, because
word-tokens are not binomially distributed in
real life.

8. TESTS OF ACCURACY:
A BIGRAM STUDY

A second test of accuracy is based on the find-
ings reported in Tables 1 and 2 of Church &
Gale (1991). This study used a 44-million-word
sample of English comprising most of the dif-
ferent articles distributed by the Associated Press
newswire in 1988 (some portions of the year
were missing, and the material had been proc-
essed in order to eliminate identical or near-
identical articles). Each bigram in the sample
was assigned randomly to one of two subsam-
ples: thus, although we may not know how rep-
resentative 1988 AP newswire stories are of wider
linguistic populations such as modern journal-
istic American English, what matters for present
purposes is that we can be sure the two subsam-
ples come as close as possible to both repre-
senting exactly the same population (namely,
1988 AP newswire English).

Since Good-Turing techniques predict fre-
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quencies within a hypothetical additional sam-
ple from the same population as the data, whereas
the "held-out" estimator of §7 reflects frequen-
cies found in a real additional sample, we can
treat the held-out estimator based on the two
22-million-word AP subsamples as a standard
against which to measure the performance of
the SGT estimator based on just the "retained"
subsample. Table 5 compares the r* estimates
produced by held-out and SGT methods for fre-
quencies from 1 to 9.

In this example, the huge values for nr meant
that for all r values shown the SGT method se-
lected the estimate based on raw rather than
smoothed proxies. In no case does the SGT
estimate deviate by more than 1% from the held-
out estimate. The quantity of data used makes
this an untypical example, but the satisfactory
performance of the SGT technique is neverthe-
less somewhat reassuring. (The largest error in
the estimates based on smoothed proxies is 6%,
for r = 0 - that is, for the Po estimate.)

Table 5. Alternative r* Estimates for the Bigram Data.

r

1
2
3
4
5
6
7
8
9

"r

2 018 046
449 721
188 933
105 668
68 379
48 190
35 709
37 710
22 280

r SGT

0.446
1.26
2.24
3.24"
4.22
5.19
6.21
7.24
8.25

r*r HO

0.448
1.25
2.24
3.23
4.21
5.23
6.21
7.21
8.26

9. ON ESTIMATING THE PROBABILITIES
OF UNSEEN SPECIES

Good-Turing techniques give an overall esti-
mate Po for the probability of all unseen species
taken together, but in themselves they can give
no guide to the individual probabilities of the
separate unseen species.
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Provided the number of unseen species is
known, the obvious approach is to divide Po

equally between the species. But this is a very
unsatisfactory technique. Commonly, the "spe-
cies" in a linguistic application will have inter-
nal structure of some kind, enabling shares of
Po to be assigned to the various species by ref-
erence to the probabilities of their structural com-
ponents: the resulting estimates may be rather
inaccurate, if probabilities of different compo-
nents are in reality not independent of one an-
other, but they are likely to be much better than
merely assigning equal probabilities to all un-
seen species.

The bigram study discussed in §8 offers one
illustration. Many bigrams will fail to occur in
even a large language sample, but the sample
gives us estimated unigram probabilities for all
word-types it contains (that is, probabilities that
a word-token chosen at random from the popu-
lation represents the respective word-type).
Writing p(w) for the estimated unigram proba-
bility of a word w, the bigram probability of
any unseen bigram wlw2 can be estimated by
taking the product p(wl)p(w2) of the unigram
probabilities and multiplying it by P0/Pô (where
Fo is the Good-Turing estimate of total unseen-
species probability as before, and P'Q is the sum
of the products p(w.)p(w) for all unseen bi-
grams wtw. - multiplying by P0/Pô is a renor-
malization step necessary in order to ensure that
estimated probabilities for all seen and unseen
bigrams total unity). This technique is likely to
overestimate probabilities for unseen bigrams
consisting of two common words which would
usually not occur together for grammatical rea-
sons (say, the if), and to underestimate proba-
bilities for two-word set phrases that happen
not to occur in the data, but over the entire range
of unseen bigrams it should perform far better
on average than simply sharing Po equally be-
tween the various cases.

A second example is drawn from the field of
syntax. The SUSANNE Corpus (Sampson, 1995)
is a 130 000-word subset of the Brown Corpus
of written American English, grammatically
analysed according to a rigorously-specified
analytic scheme.18 Syntactic constituents are clas-
sified in terms of a fine-grained system of gram-

matical properties, which in some cases allows
for many more distinct constituent-types than
are represented in the Corpus.

The following figures relate to a version of
the SUSANNE Corpus from which 2% of para-
graphs chosen at random had been excluded in
order to serve as test data for a research project
not relevant to our present concerns: thus the
sample studied comprises about 127 000 words.
Taking the syntactic category "noun phrase" for
investigation, the sample contains 34 204 in-
stances, classified by the SUSANNE annota-
tion scheme into 74 species. For instance, there
are 14 527 instances of Ns, "noun phrase marked
as singular", which is the commonest species of
noun phrase; there are 41 instances of Np@,
"appositional noun phrase marked as plural";
one of the species represented by a single in-
stance is Nj", "noun phrase with adjective head
used vocatively". However, the number of pos-
sible species implied by the annotation scheme
is much larger than 74. A noun phrase may be
proper or common, it may be marked as singu-
lar, marked as plural, or unmarked for number,
and so on for six parameters having between
two and six values, so that the total number of
species is 1944.

The number of species seen once, nlt is 12;
therefore the Good-Turing estimate of PQ, the
total probability of unseen species, is 12/34204
= 0.00035. (The SGT estimate for P, is
2.6e-05.) Since each noun-phrase species is
defined as a conjunction of values on six pa-
rameters, counts of the relative frequencies of
the various values on each parameter can be
used to estimate probabilities for unseen spe-
cies. For instance, on the number-marking pa-
rameter, to two significant figures 0.64 of noun
phrases in the sample are marked as singular,
0.22 are marked as plural, and 0.13 are unmarked
for number. If one estimates the probability for
each unseen species by multiplying together these
probabilities for the various parameter-values
which jointly constitute the species, then P'o,
the sum of the products for the 1870 unseen
species, is 0.085; some samples of estimated
probabilities for individual unseen species are
shown in Table 6.

In Table 6, Nas+ represents a conjunct intro-
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Table 6. Estimated Probabilities for some Unseen Noun
Phrase Types.

Nas+
Nyn
Njp!

.0013 x

.00015 Jo
2.7e-07x PJP'Q

= 5.4e-06
= 6.2e-07
= l.le-09

duced by a co-ordinating conjunction and marked
as subject and as singular, for instance the itali-
cized phrase in a hypothetical sequence "my
son and he were room-mates". In English it is
more usual to place the pronoun first in such a
co-ordination; but intuitively the quoted phrase
seems unremarkable, and the calculation assigns
an estimated probability of the same order as
that estimated for species seen once. Nyn repre-
sents a proper name having a second-person pro-
noun as head. This is possible — one of us drives
to work past a business named Slender You -
but it seems much more unusual; it is assigned
an estimated probability an order of magnitude
lower. Njp! represents a noun phrase headed by
an adjective, marked as plural, and functioning
as an exclamation. Conceivably, someone con-
templating, say, the aftermath of a battle might
utter the phrase These dead!, which would ex-
emplify this species - but the example is pat-
ently contrived, and it is assigned an estimated
probability much lower still. Thus the probabil-
ity differentials in these cases do seem to corre-
late at least very crudely with our intuitive judge-
ments of relative likelihood - certainly better
than would be achieved by sharing PQ equally
among the unseen species, which would yield
an estimated probability of 1.9e-07 in each case.
(As in the bigram case, there are undoubtedly
some individual unseen species in this example
which will be much rarer or commoner than
predicted because of interactions between val-
ues of separate parameters.)

This approach to estimating the probabilities
of unseen species depends on the nature of par-
ticular applications. For most language and
speech applications, though, it should be possi-
ble to find some way of breaking unseen "spe-
cies" down into complexes of components or
features whose probabilities can be estimated
individually, in order to apply this method. For

the prosody example, for instance, a particular
sequence of sound-classes could be broken down
into successive transitions from the eight-mem-
ber set VC, VR, CC, CR, RC, RR, CV, RV,
each of which could be assigned a probability
from the available data. Whenever such a tech-
nique is possible, it is recommended.

10. CONCLUSION

We have presented a Good-Turing method for
estimating the probabilities of seen and unseen
types in linguistic applications. This Simple
Good-Turing estimator uses the simplest possi-
ble smooth of the frequencies of frequencies,
namely a straight line, together with a rule for
switching between estimates based on this
smooth and estimates based on raw frequencies
of frequencies, which are more accurate at low
frequencies. The SGT method is more complex
than additive techniques, but simpler than two-
way cross-validation. On a set of Monte Carlo
examples SGT proved to be far more accurate
than additive techniques; it was more accurate
than 2CV for low frequencies, and about equal-
ly accurate for higher frequencies.

The main assumption made by Good-Turing
methods is that items of interest have binomial
distributions. The accuracy tests reported in §7
relate to artificial data for which the items are
binomially distributed; how far the usefulness
of SGT may be vitiated by breakdowns of the
binomial assumption in natural-language data
is an unexplored issue.

The complexities of smoothing may have hin-
dered the adoption of Good-Turing methods by
computational linguists. We hope that SGT is
sufficiently simple and accurate to remedy this.

NOTES

1. Many writers reserve the term frequency for counts
of specific items, and if we conformed to this usage
we could not call Pi a "population frequency": such
a quantity would be called a "population probabili-
ty". In order to make the present paper accessible to
its intended audience, we have preferred not to ob-
serve this rule, since it leads to conflicts with ordinary
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English usage: people speak of the frequency, not
the probability, of (say) redheads in the British pop-
ulation, although that population is open-ended, with
new members constantly being created. Furthermore
I.J. Good, the writer whose ideas we shall expound,
himself used the phrase "population frequency". But
it is essential that readers keep distinct in their mind
the two senses in which "frequency" is used in this
article.

2. The likelihood of x given y is the probability of y
given x, considered as a function of x (Fisher, 1922:
324-327; Box & Tiao, 1973: 10). The maximum
likelihood estimator selects that population frequency
which, if it obtained, would maximize the probabil-
ity of the observed sample frequency. That is not
the same as selecting the population frequency which
is most probable, given the observed sample fre-
quency (which is what we want to do).

3. When reading Church & Gale (1991), in which the
item cited above is an appendix, one should be aware
of two notational differences between that article
and Good (1953), to which the notation of the present
article conforms. Church & Gale use Nr rather than
nr to represent the frequency of frequency r; and
they use V (for "vocabulary") rather than s for the
number of species in a population.

4. Mosteller & Wallace ( 1964) concluded that for nat-
ural-language data the "negative binomial"
distribution tended to fit the facts better than the
binomial distribution; however, the difference was
not great enough to affect the conclusions of their
own research, and the difficulties of using the nega-
tive binomial distribution have in practice kept it
from being further studied or used in the subsequent
development of computational linguistics, at least
in the English-speaking world.

5. When r is the highest sample frequency, Z r is com-
puted by setting r" to a hypothetical higher frequency
which exceeds r by the same amount as r exceeds
r'.

6. To avoid confusion, we should point out that Zipf
made two claims which are prima facie independent
(Zipf, 1935: 40-48). The generalization commonly
known as Zipf's Law (though Zipf himself yielded
priority to J.B. Estoup) is that, if vocabulary items
or members of analogous sets are ranked by fre-
quency, then numerical rank times frequency is
roughly constant across the items. This law (later
corrected by Benoît Mandelbrot, cf. Apostel et al.,
1957) does not relate directly to the discussion above,
which is not concerned with rank order of species.
But Zipf also held that frequency and frequency-of-
frequency are related in a log-linear manner. In fact
Zipf claimed (see e.g. Zipf, 1949: 32, 547 n. 10 to
ch. 2) that the latter generalization follows from the
former; however, we do not rely on (and do not
accept) this argument, pointing out merely that our
empirical finding of log-linear relationships in di-
verse language and speech data-sets agrees with a
long-established general observation.

7. Statistically sophisticated readers might expect data
points to be differentially weighted in computing a

line of best fit. We believe that equal weighting is a
good choice in this case; however, a discussion would
take us too far from our present theme.

8. The implementations of the SGT technique reported
later in this paper used the coefficient 1.65 rather
than 1.96, corresponding to a .1 significance criteri-
on. This means that there are likely to be a handful
of cases over the range of examples discussed where
a pr estimate for some value of r was based on a
raw proxy where, using the more usual .05 signifi-
cance criterion, the technique would have selected
an estimate based on a smoothed proxy for that par-
ticular value of r.

9. The approximations made to reach this are that nr

and n r+1 are independent, and that Var (nr) s nr.
For once the independence assumption is reasona-
ble, as may be gathered from how noisy nr is. The
variance approximation is good for binomial sam-
pling of species with low probability, so it is consistent
with Good-Turing methodology.

10. Standard smoothing methods applied over the entire
range of r will typically oversmooth nr for small r
(where the unsmoothed data estimate the probabili-
ties well) and undersmooth nr for large r (where
strong smoothing is needed); they may also leave
local minima and maxima, or at least level stretch-
es, in the series of smoothed nr values. All of these
features are unacceptable in the present context, and
are avoided by the SGT technique. They are equal-
ly avoided by the smoothing method used in Church
& Gale (1991), but this was sufficiently complex
that neither author has wished to use it again.

11. Chinese script represents morphemes as units, and
lacks devices comparable to word-spacing and hy-
phenation that would show how morphemes group
together into words.

12. Testing the statistical significance of such a differ-
ence is an issue beyond the scope of this paper.

13. Source code implementing this algorithm is availa-
ble by anonymous ftp from ftp.cogs.susx.ac.uk, in
file /pub/users/geoffs/SGT.c.

14. Regression analysis yields some line for any set of
data points, even points that do not group round a
linear trend. The SGT technique would be inappro-
priate in a case where r and Z were not in a log-linear
relationship. As suggested in §4, we doubt that such
cases will be encountered in the linguistic domain;
if users of the technique wish to check the linearity
of the pairs of values, this can be done by eye from a
plot, or references such as Weisberg (1985) give
tests for linearity and for other ways in which linear
regression can fail.

15. Katz (1987) used an estimator which approximates
to the Good-Turing technique but incorporates no

smoothing: r* is estimated as (r+1) nr +1/nr for

values of r below some number such as 6 chosen
independently of the data, and simply as r for higher
values of r, with renormalization to make the result-
ing probabilities sum to one. Although having less
principled justification than true Good-Turing meth-
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ods, this estimator is very simple and may well be
satisfactory for many applications; we have not as-
sessed its performance on our data. (We have also
not been able to examine further new techniques
recently introduced by Chitashvili & Baayen (1993).)

16. Following Fisher (loc. cit.), Box & Tiao (1973: 34-
36) give a non-informative prior for the probability,
π, of a binomially distributed variable. Their equa-
tion 1.3.26 gives the posterior distribution for the
probability π after observing y successes out of n
trials. The expected value of this probability can be
found by integrating π times the equation given

from zero to one, which yield y + 1/2 / n+1. This is equiv-

aient to adding one-half to each of the number of
successes and failures. Add-Half is sometimes called
the "expected likelihood estimate", parallel to the
"maximum likelihood estimate" defined above.

17. I.J. Good (who defined one of the empirical addi-
tive estimators surveyed by Fienberg & Holland -
cf. Good, 1965: 23-29) has suggested to the present
authors that additive techniques may be appropriate
for cases where the number of species in the popula-
tion is small, say fewer than fifty (for instance when
estimating frequencies of individual letters or pho-
nemes), and yet some species are nevertheless
unrepresented, or represented only once, in the sam-
ple. This would presumably be a quite unusual
situation in practice.

18. The SUSANNE Corpus is available by anonymous
ftp from ota.ox.ac.uk, in directory /pub/ota/public/
susanne.
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APPENDIX

This appendix contains the full set of (r,nr)
pairs for the prosody example of §2.

r
1
2
3
4
5
6
7
8
9
10
12
14
15
16

120
40
24
13
15
5
11
2
2
1
3
2
1
1

17
19
20
21
23
24
25
26
27
28
31
32
33
34
36
41
43
45
46
47
50
71
84
101
105
121
124
146
162
193
199
224
226
254
257
339
421
456
481
483
1140
1256
1322
1530
2131
2395
6925
7846

3
1
3
2
3
3
3
2
2
1
2
2
1
2
2
3
1
3
1


